Code: 20EE3503

III B.Tech - I Semester – Regular / Supplementary Examinations NOVEMBER 2024

ELECTRICAL POWER GENERATION, TRANSMISSION AND DISTRIBUTION

(ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

	1			I	1		
			BL	СО	Max.		
					Marks		
	UNIT-I						
1	a)	Illustrate the factors to be considered for	L3	CO2	5 M		
		selecting the site for Hydel power plant.					
	b)	With neat sketch explain the working of	L3	CO2	9 M		
		Hydel power plant.					
	OR						
2	a)	Illustrate the factors to be considered for	L3	CO2	5 M		
		selecting the Location of Nuclear power					
		plant.					
	b)	With neat sketch explain the working of	L3	CO2	9 M		
		Nuclear power plant.					
UNIT-II							
3	a)	Determine the capacitance of a 200km long	L3	CO3	7 M		
		3-phase, 50Hz overhead transmission line					
		with conductors each of diameter 4cm and					
		spaced 2m apart at the corners of an					
		equilateral triangle.			_		
Page 1 of A							

	b)	Derive an expression for the inductance per	L3	CO3	7 M		
		phase for a 3-phase overhead transmission	LJ		/ 1 V1		
		line when conductors are symmetrically					
		placed.					
4		OR	1.2	002	7.14		
4	a)	Derive the expression for capacitance of a	L3	CO3	7 M		
		single-phase two wire line.					
	b)	A single phase transmission line has two	L3	CO3	7 M		
		parallel conductors 3m apart, the radius of					
		each conductor being 1cm. Calculate the					
		loop inductance per km length of the line if					
		the material of the conductor is:					
		i. Copper					
		ii. Steel with relative permeability of 100.					
	UNIT-III						
	1						
5	a)	Derive the expression for A, B, C, D	L3	CO3	7 M		
5	a)		L3	CO3	7 M		
5	a)	Derive the expression for A, B, C, D parameters for long transmission lines (rigorous method).		CO3	7 M		
5	a) b)	Derive the expression for A, B, C, D parameters for long transmission lines (rigorous method).		CO3	7 M		
5	,	Derive the expression for A, B, C, D parameters for long transmission lines (rigorous method).					
5	,	Derive the expression for A, B, C, D parameters for long transmission lines (rigorous method). A 50Hz, 3-phase transmission line is 280 km long. It has a total series impedance of (35 + j140) ohms and shunt admittance of					
5	,	Derive the expression for A, B, C, D parameters for long transmission lines (rigorous method). A 50Hz, 3-phase transmission line is 280 km long. It has a total series impedance					
5	,	Derive the expression for A, B, C, D parameters for long transmission lines (rigorous method). A 50Hz, 3-phase transmission line is 280 km long. It has a total series impedance of (35 + j140) ohms and shunt admittance of					
5	,	Derive the expression for A, B, C, D parameters for long transmission lines (rigorous method). A 50Hz, 3-phase transmission line is 280 km long. It has a total series impedance of (35 + j140) ohms and shunt admittance of 930*10 ⁻⁶ siemen. It delivers 40,000 KW at					
5	,	Derive the expression for A, B, C, D parameters for long transmission lines (rigorous method). A 50Hz, 3-phase transmission line is 280 km long. It has a total series impedance of (35 + j140) ohms and shunt admittance of 930*10 ⁻⁶ siemen. It delivers 40,000 KW at 220KV with 90% p.f lagging. Find the					
5	,	Derive the expression for A, B, C, D parameters for long transmission lines (rigorous method). A 50Hz, 3-phase transmission line is 280 km long. It has a total series impedance of (35 + j140) ohms and shunt admittance of 930*10 ⁻⁶ siemen. It delivers 40,000 KW at 220KV with 90% p.f lagging. Find the Generalized Circuit Constants, Sending end					

6	a)	Derive the expressions for A, B, C, D	L3	CO3	7 M
		parameters of a nominal– π of a medium			
		length transmission line. And also prove			
		AD-BC = 1 for the same network.			
	b)	Illustrate the effect of Wind and ice loading	L3	CO3	7 M
		on calculation of sag.			
		UNIT-IV			
7	a)	Explain various types of insulators with neat	L3	CO5	7 M
		diagrams and compare them.			
	b)	Illustrate critical disruptive voltage.	L3	CO5	7 M
		OR			
		_			I
8	a)	What do you understand by grading of	L3	CO5	7 M
		insulators? Explain.			
	b)	Each line of a three phase system is	L3	CO3	7 M
		suspended by a string of three identical			
		insulators of self-capacitance of C farad.			
		The shunt capacitance of connecting metal			
		work of each insulator is 0.2C to earth and			
		0.1C to line. Calculate the string efficiency			
		of the system and also calculate string			
		efficiency if a guarding increases the			
		capacitance to the line of metal work of the			
		lowest insulator to 0.3C.			

	UNIT-V					
9	Single phase distributor 2 km long supplies a	L4	CO4	14 M		
	load of 120A at 0.8 p.f. lagging at its far end and					
	a load of 80A at 0.9 p.f. lagging at its mid point.					
	Both power factors are referred to the voltages at					
	the far end. The resistance and reactance per km					
	(go and return) are 0.05Ω and 0.1Ω respectively.					
	If the voltage at the far end is maintained at					
	230V, calculate:					
	i. Voltage at the sending end					
	ii. Phase angle between voltages at the two ends					
	OR					
10	Explain the classification of DC distribution	L4	CO4	14 M		
	system and derive the voltage equations for					
	Radial distributor with concentrated loading					
	with feeding at one end and feeding at both the					
	ends with unequal voltages.					